Contents lists available at SciVerse ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Short Communication

Simultaneous determination of Hg(II) and Zn(II) using a GFP inspired chromophore

Lei Shi^a, Yang Li^a, Zhao-Peng Liu^a, Tony D. James ^b, Yi-Tao Long ^{a,}*

^a State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China

^b Department of Chemistry, University of Bath, Bath BA2 7AY, UK

article info

Article history: Received 22 June 2012 Accepted 1 July 2012 Available online 10 August 2012

Keywords: Green fluorescent protein Simultaneous determination Fluorescent and colorimetric Chemosensor

ABSTRACT

A dual-function chemosensor for Hg²⁺ and Zn²⁺ ions, inspired by the green fluorescent protein (GFP) chromophore, was designed and synthesized, which could specifically recognize Zn^{2+} through an ''OFF–ON'' fluorescence mechanism due to the restriction of the free rotation of the aryl–alkene bond, whilst also producing a selective visible colorimetric response from yellow to pink with Hg^{2+} ions. The response upon exposure to Zn^{2+} and Hg²⁺ is instantaneous, and the detect limits of Zn^{2+} and Hg²⁺ are 2.18×10^{-8} M and 4.91×10^{-7} M respectively.

 \odot 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mercury is highly toxic even at low levels [\[1–3](#page-3-0)] and can be easily absorbed and accumulated from the environment by human beings, resulting in brain damage and other chronic diseases. Therefore, the design of sensitive sensors and devices for Hg^{2+} detection has attracted considerable attention [\[4–8\]](#page-3-0). Whilst Zn^{2+} ions are the second most abundant transition heavy metal in the human body and play an important role in metabo-lism [\[9\].](#page-3-0) However, Zn^{2+} is also a metal pollutant of the environment in water or soil, especially at high concentration[s\[10\].](#page-3-0) Making the sensitive and selective determination of Zn^{2+} is of great interest [\[11](#page-3-0)–[14](#page-3-0)], resulting in much effort being devoted to the selective detection of Zn^{2+} ions [\[15,16\]](#page-3-0).

In order to prevent heavy metal pollution, significant effort has been made to develop methods for the detection of these polluting metal ions [\[17–21](#page-3-0)]. In particular optical chemosensors, which are simple, quick and sensitive, have attracted much attention for the detection of heavy metal ions [\[22–24](#page-3-0)]. However, although fluorescent and colorimetric chemosensors are sensitive and effective, very few examples of chemosensors have been designed to detect two or more kinds of metal ions simultaneously [\[25\].](#page-3-0)

The green fluorescent protein (GFP) has been widely applied in molecular biology, cell biology, biotechnology, and molecular genetics, since it was isolated from jellyfish (Aequorea victoria) [\[26,27](#page-3-0)]. The GFP chromophore, p-hydroxybenzyl ideneimidazolinone (p-HBDI, [Fig. 1\)](#page-1-0), is formed via autocatalytic cyclization and dehydration of a Ser–Tyr–Gly tripeptide motif followed by air-oxidization [\[28\]](#page-3-0). However, this chromophore does not fluoresce due to the free rotation of aryl–alkene bond [\[29–31\]](#page-3-0). Burgess et al. have used a $BF₂$ unit to restrict the free rotation of synthetic GFP chromophores [\[32\].](#page-3-0) Although the GFP has been known for more than 20 years, GFP or its derivatives have seldom been used to construct sensors to detect metal ions. Tolbert et al. have reported a GFP analog, in which the fluorescence is turned on by complexation with Zn^{2+} and Cd²⁺ [\[33\].](#page-3-0) In our previous work, we synthesized a GFP analog, which behaved as an excellent fluorescent chemosensor for Zn^{2+} detection [\[28\]](#page-3-0).

In this work, we designed and synthesized a novel chemosensor 1 based on the GFP chromophore for the simultaneous detection of Zn^{2+} and Hg²⁺ ions. The sensing capacities of compound 1 for Zn^{2+} and Hg^{2+} were investigated using UV/vis and fluorescence spectroscopic methods. On addition of Zn^{2+} a fluorescence turn ON response was observed, whilst on addition of Hg^{2+} ions a visible colorimetric change was observed. We believe that one possible practical application of this chemosensor is to detect residual Zn^{2+} and Hg²⁺ found after the preparation of zinc amalgam. The proposed scheme for the detection of Zn^{2+} and Hg²⁺ is shown in [Fig. S1](#page-3-0).

2. Experimental

2.1. Materials

All the chemicals were of analytic grade and used as received. All solutions were prepared with Nanopure water (18 M Ω cm⁻¹)

 $*$ Corresponding author. Tel./fax: $+86$ 21 64250032.

E-mail addresses: ytlong@ecust.edu.cn, yitaolong@gmail.com (Y.-T. Long).

^{0039-9140/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.talanta.2012.07.097

Fig. 1. Strcucture of p-HBDI.

Fig. 2. Synthesis of chemosensor 1.

from a Millipore system and distilled $CH₃CN$. All the metal ion solutions (Zn^{2+} , Ca^{2+} , Mg^{2+} , Na⁺, Co²⁺, Ni²⁺, Ag⁺, Cd²⁺, Pb²⁺, Cu^{2+} and Hg²⁺) were prepared by adding 5 volumes of aqueous solution to 95 volumes of CH₃CN. 1 H NMR and 13 C NMR were acquired in $CDCl₃$ on a BRUKER AVANCE 500 spectrometer using TMS as an internal standard. HRMS were obtained on a HP 5989 mass spectrometer. Infrared spectra were recorded on a Bruker tensor 27 spectrometer. Melting points were determined with a melting point apparatus without correction. Fluorescence spectra were determined on a Varian Cary Eclipse fluorescence spectrometer. UV/vis spectra were measured on a Varian Cary 500 spectrophotometer.

2.2. Synthesis of 1-methyl-4-((6-((1-methyl-2-oxo-5-phenyl-1Hpyrrol-3(2H)-ylidene)methyl)pyridine-2-yl)methylene)-2-phenyl-1H-imidazol-5(4H)-one (compound 1)

A mixture 147 mg of pyridine-2,6-dicarbaldehyde (0.6 mmol) and 200 mg 1-methyl-2-phenyl-1H-imidazol-5(4H)-one (1.25 mmol) in 6 mL absolute ethanol, and piperidine (1–2 drops) were stirred at reflux for 4 h. The reaction mixture was cooled, and the precipitated solid was filtered, washed with ethanol to obtain a yellow solid product **1**, Fig. 2 119 mg, 54% yield. ¹H NMR, (CDCl₃, δ ppm, 500 MHz): δ 8.87 (d, J = 7.9 Hz, 1H), 7.85 (m, 3H), 7.74–7.51(m, 3H), 7.43 (s, 1H), 3.36 (s, 3H). ¹³C NMR (500 MHz, δ ppm, CDCl₃): δ 171.45, 164.20, 153.77, 141.35, 136.56, 131.93, 128.90, 128.37, 127.70, 29.15. MS (ESI) m/z calcd. for $(M+)$ C₂₇H₂₁N₅O₂ 447.1695; found 447.1697.

2.3. Preparation of 1-doped sol–gel [\[34\]](#page-3-0)

TEOS sol–gel was prepared by mixing 20 mL of TEOS with 2 mL ethanol and 0.2 mL of 0.01 M HCl. The sol–gel was stirred vigorously for 1 h and doped with 2 mL compound 1 (10×10^{-6} M in CH₃CN); the sol was stirred overnight before use.

3. Results and discussions

The UV/vis spectroscopic properties of compound 1 $(2 \times 10^{-5}$ M) were investigated in aqueous buffer (CH₃CN/HEPES, 95/5, v/v; HEPES, 50 mM, pH 7.4). As shown in Fig. 3, a solution of compound 1 which is of yellow color shows a maximum absorption centered at 400 nm (ε =3.54 \times 10⁵ L M⁻¹ cm⁻¹), which is similar to that of natural GFP. Upon addition of Hg^{2+} , a new broad absorption band around 550 nm $(\epsilon = 3.6 \times 10^3 \text{ L M}^{-1} \text{ cm}^{-1})$ develops which results in a color change from yellow to pink. Similar results were reported from some previous works. To investigate the effects of other metal ions on the UV/vis spectroscopic properties of compound 1, several other metal ions

Fig. 3. Absorption of 1 (20 μ M) CH₃CN/HEPES (95/5, v/v, HEPES, 50 mM, pH = 7.4) upon complexation with increasing concentration of Hg^{2+} . Inset: Job's plot, absorption measured at 550 nm.

were investigated ([Fig. S2](#page-3-0)). As expected, addition of the other metals to solutions of compound 1 resulted in no or little absorption change at 550 nm. This is likely due to the d^{10} configuration of Hg^{2+} with tetrahedral coordination geometry, and the large ionic radius is likely to take advantage of the specific binding to the ligand having two closed imidazole rings [\[35,36\]](#page-3-0). The pink color occurs only in the presence of Hg^{2+} with or without competing metal ions (from yellow to pink, [Fig. S3B](#page-3-0)). As a competing ion, the interference of Zn^{2+} in the detection of Hg²⁺ was investigated. Hg^{2+} was added to a solution of compound 1 containing 12 equivalents of Zn^{2+} ; the absorbance of the mixed solution was measured ([Fig. S4\)](#page-3-0), indicating that Zn^{2+} does not interfere with the detection of Hg^{2+} at 550 nm. These results demonstrate that compound 1 can be used as a visible colorimetric chemosensor for Hg^{2+} determination.

The fluorescence spectra of compound 1 and its titration with Zn^{2+} were also measured in aqueous buffer (CH₃CN/HEPES, 95/5, v/v; HEPES, 50 mM, pH 7.4). From [Fig. 4](#page-2-0) it can be seen that Zn^{2+} binding leads to a fluorescence enhancement of the chromophore centered at 474 nm. The fluorescence increase is caused by restriction of the free rotation of the aryl–alkene bond between pyridine and imidazolone unit on $\text{Zn}^{\tilde{2}+}$ binding. Titration of compound 1 with Zn^{2+} results in a decrease of the fluorescence emission peak at 450 nm and increase of the fluorescence emission peak at 474 nm. The interference of other metal ions was investigated under the same conditions. As shown in [Fig. 4](#page-2-0)A, the addition of Zn^{2+} resulted in strong fluorescence emission at 474 nm, while Ca²⁺, Mg²⁺, Na⁺, Co²⁺, Ni²⁺, Ag⁺, Cd²⁺ and Pb²⁺ caused no or little fluorescence changes and Hg²⁺ and Cu²⁺ totally quench the fluorescence. The quenching of emission band is attributed to the spin–orbit coupling effects in case of Hg^{2+} [\[37\]](#page-3-0) ions and the paramagnetic nature of Cu^{2+} [\[38\].](#page-3-0)

To further explore the selectivity of compound 1 for Zn^{2+} , we measured the fluorescence intensity of compound 1 in the presence of Zn^{2+} and other metal ions. As depicted in [Fig. 5,](#page-2-0) the addition of 1 equivalent of Zn^{2+} to a solution of compound 1 (10μ M) containing 12 equivalents of various metal ions can enhance or recover the fluorescence emission intensity except for Cu²⁺ and Hg²⁺. To solve this problem, thiourea was used as a masking agent for Hg²⁺ (thiourea can also mask Cu²⁺) [\[39\]](#page-3-0). As shown in [Fig. S5](#page-3-0) after masking by thiourea, on addition of Zn^{2+} to a solution of 1 containing Hg^{2+} the fluorescence intensity is significantly enhanced. [Fig. S6](#page-3-0) shows the visible fluorescence changes. Our observations demonstrate that compound 1 can be used as a fluorescent chemosensor for Zn^{2+} determination.

Benesi–Hildebrand analysis [\[40\]](#page-3-0) of the absorption data and the Job's plot (inset of [Fig. 3\)](#page-1-0) indicate a 1:1 stoichiometry for the $1-Hg^{2+}$ complex, Kass = 2.25×10^4 M⁻¹. The emission data and Job's plot

Fig. 4. Fluorescence spectrum of 1 (10 μ M) in CH₃CN/HEPES (95/5, v/v, HEPES, 50 mM, pH 7.4) upon titrating different molar ratios of Zn^{2+} with excitation at 400 nm. Inset: Job's plot; the total concentration of 1 and Zn^{2+} ion is 5.0 mM.

Fig. 5. Fluorescence response of 1 (10 μ M) in CH₃CN/HEPES (95/5, v/v, HEPES, 50 mM, pH 7.4) solution of various metal ions (Ca²⁺, Mg²⁺, Na⁺, Co²⁺, Ni²⁺, Ag⁺ Cd^{2+} , Pb²⁺, Cu²⁺ and Hg²⁺). The white bars represent the solution mixed with 1 and 12 equivalents of various ions; the black bars represent the solution mixed with 1 and 12 equivalents of ions and 12 equivalents of Zn^2 ⁺.

(inset of Fig. 4) also clearly indicate a 1:1 stoichiometry for the $1-Zn^{2+}$ complex, and the association equilibrium constant (Kass) is 2.079×10^3 M⁻¹. Since the Kass of Hg²⁺ is larger than that of Zn²⁺, Zn^{2+} cannot compete with Hg^{2+} which is consistent with our observations. The detection limits for Zn^{2+} and Hg²⁺ can be estimated from the titration results to be 2.18×10^{-8} M and 4.91×10^{-7} M respectively [\(Figs. S7 and S8](#page-3-0)). The complexes of Zn^{2+} and Hg²⁺ were also further analyzed by MALDI mass spectro-scopy ([Fig. S12\)](#page-3-0). It should be noted that the peak at m/e 511.0987 of $1/\text{Zn}^{2+}$ and the peak at m/e 644.1262 of $1/\text{Hz}^{2+}$ could be attributed to the $1-Zn^{2+}$ and $1-Hg^{2+}$ complexes respectively.

Next we investigated the properties of the sensor in water. However, given that compound 1 is quite insoluble in water, we encapsulated the dye in a sol–gel to help measure Zn^{2+} and Hg²⁺ in water. Compound 1 can be entrapped in a sol–gel matrix while still being accessible from solution [\[41\]](#page-3-0). Fig. 6 shows the responses of a 1-doped sol–gel towards different metal ions. The results obtained are consistent with Fig. 4, where only the addition of Zn^{2+} (1 µM, H₂O) caused a fluorescence enhancement (Fig. 6A), while only Hg^{2+} (1 μ M, H₂O) caused a color change (yellow to pink, Fig. 6B). Furthermore, the 1-doped sol–gel was applied to the determination of Hg²⁺ and Zn²⁺ in river water (Qingchun River, Shanghai). The water sample was percolated before using. The results obtained are shown in Table 1. These results indicate that compound 1 can be effectively used as a chemosensor for detecting Zn^{2+} and Hg²⁺ in aqueous solution.

[Fig. S9](#page-3-0) shows the pH dependent fluorescence changes obtained for 1. The plot of the integrated emission intensity reveals that at lower pH values (< 6) the fluorescence of 1 is quenched, which is in agreement with our previous work [\[28\]](#page-3-0). The presence of water has significant effect on the selectivity of 1, so the percentage of water on the fluorescence intensity of 1 was investigated. [Fig. S10](#page-3-0) shows that the chromophore has maximum emission in 5% water solution.

4. Conclusion

In conclusion, we have designed and synthesized a new chemosensor 1 inspired by GFP which can behave as a Zn^{2+} specific fluorescence turn-on chemosensor that exhibits good selectivity. Furthermore, 1 can also be used as a visible colorimetric chemosensor for Hg^{2+} determination. We believe that this

Table 1 Recovery test for Hg²⁺ and Zn^{2+} from spiked samples in river water.

Metal ions	Added $(10^{-6} M)$	Found $(10^{-6} M)$	Recovery (%)
Hg^{2+} Zn ²⁺	1.00	0.971	97.1
	1.00	0.936	93.6

Fig. 6. (A) Visible fluorescence emission responses of 1-doped sol-gel with 1 equivalent Zn^2 + and various metal ions (Ca^2+) , Mg^2 ⁺, Na⁺, Co²⁺, Ni²⁺, Ag^{+,} Cd²⁺, Pb²+, Cu²+ and Hg²+) (B) Color changes of 1-doped sol–gel in the presence of Hg²+ and 1 equivalent other metal ions (Zn²+, Ca²+, Mg²+, Na⁺, Co²+, Ni²⁺, Ag⁺, Cd²+, Pb^{2+} and Cu^{2+}).

system will be useful to simultaneously detect Zn^{2+} and Hg²⁺ ions in practical application.

Acknowledgments

This research was supported by the National Science Fund for Distinguished Young Scholars (21125522), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20100074120017), the Shanghai Municipal Natural Science Foundation (No. 11ZR1408900) and National Natural Science Foundation of China (Grant No. 21105028), the Major Research Plan of National Natural Science Foundation of China (91027035), the Fundamental Research Funds for the Central Universities (WK1013002) and the Open Project Program of the State Key Laboratory of Chemical Engineering (ECUST, SKL-ChE-11C01). The authors thank the Catalysis and Sensing for our Environment (CASE) network.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.talanta.2012.07.097.

References

- [1] N. Wanichacheva, M. Siriprumpoonthum, A. Kamkaew, K. Grudpan, Tetrahedron Lett. 50 (2009) 1783–1786.
- [2] Y. Li, S. He, Y. Lu, X. Zeng, Org. Biomol. Chem. 9 (2011) 2606–2609.
- [3] Z. Wu, Y. Zhang, J.S. Ma, G. Yang, Inorg. Chem. 45 (2006) 3140–3142.
- [4] S.M. Park, M.H. Kim, J.-I. Choe, K.T. No, S.-K. Chang, J. Org. Chem. 72 (2007) 3550–3553.
- [5] X. Chen, S.-W. Nam, M.J. Jou, Y. Kim, S.-J. Kim, S. Park, J. Yoon, Org. Lett. 10 (2008) 5235–5238.
- [6] Y. Zhao, Y. Sun, X. Lv, Y. Liu, M. Chen, W. Guo, Org. Biomol. Chem. 8 (2010) 4143–4147.
- [7] X. Zhang, Y. Xiao, X. Qian, Angew. Chem. Int. Ed. 47 (2008) 8025–8029.
- [8] V.K. Gupta, A.K. Singh, M. Al Khayat, B. Gupta, Anal. Chim. Acta 590 (2007) 81–90.
- [9] L. Xue, Q. Liu, H. Jiang, Org. Lett. 11 (2009) 3454–3457.
- [10] A. Voegelin, S. Pfister, A.C. Scheinost, M.A. Marcus, R. Kretzschmar, Environ. Sci. Technol. 39 (2005) 6616–6623.
- [11] C. Rensing, R.M. Maier, Ecotoxicol. Environ. Saf. 56 (2003) 140–147.
- [12] M. Chen, X. Lv, Y. Liu, Y. Zhao, J. Liu, P. Wang, W. Guo, Org. Biomol. Chem. 9 (2011) 2345–2349.
- [13] Z. Xu, K.-H. Baek, H.N. Kim, J. Cui, X. Qian, D.R. Spring, I. Shin, J. Yoon, J. Am. Chem. Soc. 132 (2009) 601–610.
- [14] Z. Xu, G.-H. Kim, S.J. Han, M.J. Jou, C. Lee, I. Shin, J. Yoon, Tetrahedron 65 (2009) 2307–2312.
- [15] Z. Xu, J. Yoon, D.R. Spring, Chem. Soc. Rev. 39 (2010) 1996–2006.
- [16] Z. Liu, C. Zhang, Y. Li, Z. Wu, F. Qian, X. Yang, W. He, X. Gao, Z. Guo, Org. Lett. 11 (2009) 795–798.
- [17] W. Song, L. Zhang, L. Shi, D.-W. Li, Y. Li, Y.-T. Long, Microchim. Acta 169 (2010) 321–326.
- [18] M.A. Palacios, Z. Wang, V.A. Montes, G.V. Zyryanov, P. Anzenbacher, J. Am. Chem. Soc. 130 (2008) 10307–10314.
- [19] Y. Choi, Y. Park, T. Kang, L.P. Lee, Nat. Nano 4 (2009) 742–746.
- [20] E.S. Forzani, H. Zhang, W. Chen, N. Tao, Environ. Sci. Technol. 39 (2004) 1257–1262.
- [21] E.M. Nolan, S.J. Lippard, J. Am. Chem. Soc. 125 (2003) 14270–14271.
- [22] K. Komatsu, Y. Urano, H. Kojima, T. Nagano, J. Am. Chem. Soc. 129 (2007) 13447–13454.
- [23] E.M. Nolan, S.J. Lippard, J. Am. Chem. Soc. 129 (2007) 5910–5918.
- [24] G.G. Talanova, V.S. Talanov, Supramol. Chem. 22 (2010) 838–852.
- [25] B. Nisar Ahamed, I. Ravikumar, P. Ghosh, New J. Chem. 33 (2009) 1825–1828.
- [26] I. Petkova, G. Dobrikov, N. Banerji, G. Duvanel, R. Perez, V. Dimitrov, P. Nikolov, E. Vauthey, J. Phys. Chem. A 114 (2009) 10–20.
- [27] M. Zimmer, Chem. Rev. 102 (2002) 759–782.
- [28] Y. Li, L. Shi, L.-X. Qin, L.-L. Qu, C. Jing, M. Lan, T.D. James, Y.-T. Long, Chem. Commun. 47 (2011) 4361–4363.
- [29] A. Follenius-Wund, M. Bourotte, M. Schmitt, F. Iyice, H. Lami, J.-J. Bourguignon, J. Haiech, C. Pigault, Biophys. J. 85 (2003) 1839–1850.
- [30] C.W. Cody, D.C. Prasher, W.M. Westler, F.G. Prendergast, W.W. Ward, Biochem. 32 (1993) 1212–1218.
- [31] J. Kang, G. Zhao, J. Xu, W. Yang, Chem. Commun. 46 (2010) 2868–2870.
- [32] L. Wu, K. Burgess, J. Am. Chem. Soc. 130 (2008) 4089–4096.
- [33] A. Baldridge, K.M. Solntsev, C. Song, T. Tanioka, J. Kowalik, K. Hardcastle, L.M. Tolbert, Chem. Commun. 46 (2010) 5686–5688.
- [34] E. Cho, B. Jang, E. Kim, K.-K. Koo, Korean J. Chem. Eng. 25 (2008) 548–552.
- [35] G. He, X. Zhang, C. He, X. Zhao, C. Duan, Tetrahedron 66 (2010) 9762–9768.
- [36] G. He, Y. Zhao, C. He, Y. Liu, C. Duan, Inorg. Chem. 47 (2008) 5169–5176.
- [37] D.S. McClure, J. Chem. Phys. 20 (1952) 682–686.
- [38] P. Kaur, S. Kaur, K. Singh, Org. Biomol. Chem. 10 (2012) 1497–1501.
- [39] M. Hou, J. Na, Anal. Bioanal. Chem. 397 (2010) 3589–3593.
- [40] H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71 (1949) 2703–2707.
- [41] L. Basabe-Desmonts, D.N. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 36 (2007) 993–1017.